Pascalian Longevity: Why not?

Scott Alexander of SlateStarCodex / AstralCodexTen recently wrote Pascalian Medicine, in which he looks at various substances purported to improve covid outcomes, but which have relatively low amounts of evidence in their favor, likening administration of all of them to patients to a Pascal’s wager-type argument: if there is a small probability of a potential treatment helping with covid, and if it’s also very unlikely that this treatment is harmful, should we just give it to the patient regardless of if the quality of evidence is low and uncertain, as it would clearly have a positive expected outcome regardless?

The naive answer to this could simply be to attempt to calculate an expected value (note: I use the term expected value often here, but in some cases the terms hazard ratio, relative risk, or odds ratio would be more appropriate) for each treatment, and administer it if it’s positive. But there could be some unintended consequences of using this methodology over the entire set of potential treatments: we could end up suggesting treatments of 10 or 100+ pills for conditions, and apart from something just feeling off about this, it could magnify potential drug interactions, some treatments could oppose others directly, the financial cost could start to become prohibitive, and it could decrease patient confidence and have many other undesirable second-order effects.

Pascalian Longevity

There are many counter-arguments presented to the above concept which become less salient when the goal is changed from ‘find drug treatments to prescribe to all covid patients’ to ‘find personal health interventions that increase your own lifespan/longevity’.

I am fortunate enough that I am able to evaluate potential longevity interventions myself, pay for them myself, administer them myself, and review their potential effects on me myself. I might not do a perfect job of this – research is difficult, time-consuming, and lacking in rigor and quantity, and finding appropriate longevity biomarkers to quantitatively asses the effects of interventions is also difficult. But uncertainty is a given here, and that is why we incorporate it into our frameworks when deciding if something is worth doing or not by calculating an expected value. Furthermore, any harm that I may accidentally incur will only be done to myself, reducing the ethical qualms of this framework to near-zero (I would strongly oppose arguments that I should not have the right to take drugs which I think may significantly improve my own health, although some may disagree here).

My modus operandi with respect to longevity may have many uncertainties in its output, but still operates with a very strong (in my opinion) positive expected value: If a substance significantly and consistently increases the lifespan of organisms similar to humans (ideally in humans), and is also very safe in humans, then it is something that I want to take

This is how I operate personally with longevity, and it does result in me taking quite a few things (currently I’m at around 15). I do still try to minimize what I take as a meta-principle (for example, setting a minimum threshold of expected value that a substance must provide to warrant inclusion, rather than simply accepting any positive expected value) for a few reasons: firstly, to reduce potential drug interactions (which we do attempt to asses on a per-substance basis, rather than account for as an unknown, but unknowns are unfortunately a very large component of messing with biology regardless). Secondly, to keep my costs relatively sane, although I am not too worried about this as there are few ways to spend money more effectively than on trying to improve your health. Thirdly, to reduce the occurrence of interventions that may have the same or opposing mechanisms of action (taking two things with the same mechanism of action may be okay, but sometimes dose-response curves are less favorable, and taking >~2x of something will result in diminished or even negative returns). Lastly, to minimize potential secondary side-effects that could be cumulative over large classes of substances (for example, effects on the liver).

I don’t intend to promote any specific substances or interventions here as I don’t give medical advice, nor do I want anything specific to be the focus of this post, but I do want to remind us that just as we can calculate expected values in a utilitarian fashion and get effective altruism as a result, we can do the same for longevity interventions and get a very strong chance at notably increasing our lifespan/healthspan as a result. I do have a list of some of what I take here, but it is definitely not intended to promote anything specific to others.

Why Not?: Potential counter-arguments

Algernon’s Law

Algernon’s Law is sometimes brought up, suggesting that evolution has already put a lot of effort into optimizing our body, and thus we are unlikely to find improvements easily. But, as Gwern notes in the above link, there’s at least three potential ways around this reasoning: interventions may be complex (and/or too far away in the evolutionary plane) and could not have easily been found, they may be minor or only work in some individuals, or they may have a large trade-off involved and cause harm to reproductive fitness.

Although some areas of future longevity treatments may fall under exception one and be complex enough that evolution could not have found them, I would suggest that the majority of today’s potential treatments fall under exception three: evolution optimizes for reproductive fitness, not for longevity, and for this reason there are many interventions which will improve our longevity that it has not given to us already (this is part of why I am more optimistic about longevity interventions than I am about intelligence interventions/nootropics).

For an extreme example of this, it has been noted that castrated males often live longer, and that this is obviously something evolution would not be very interested in exploring. Although this has been found with median lifespan in male mice (maybe in females too?), there is also purported historical data on Korean eunuchs suggesting that they may have lived a full 14-19 years longer (there are definitely potential confounding variables and/or bad data here, but we don’t have RCTs on this in humans for obvious reasons..), and a more recent study in sheep that is also highly relevant: Castration delays epigenetic aging and feminizes DNA methylation at androgen-regulated loci, where epigenetic aging clocks that look at DNA methylation are used in castrated sheep. There are other traits that seem to improve longevity as well, for example decreased height. It seems quite plausible that there are a lot of trade-offs that optimize for strong reproductive fitness early in the lifespan of organisms, which end up costing the organism dearly in terms of longevity. These trade-offs may be involved in many areas such as testosterone, estrogen, growth hormone, IGF-1, caloric restriction, mtor activation, and many others.

Large error in estimating unknown risks

One other counter-argument here is often along the lines of “you are messing with things you don’t understand, and you could be hurting yourself but be unaware of this; the damage may also be difficult to notice, or perhaps only become noticeable at a much later time”

It is true that our understanding of biology is lacking, and therefore also that we are operating in highly uncertain environments. I would be open to evidence that suggests reasoning for why we may be systemically underestimating the unknown risks of longevity interventions, but given how strong the potential upside is, these would have to be some pretty terrible mistakes that are being made. It is often noted how curing cancer may only extend human lifespan by a few years, whereas a longevity improvement of 5% for everyone would provide much more value (and is also much easier to find in my opinion). One could make an argument here that even if I was doing something that notably increased my risk of e.g. cancer, if the expected lifespan increase of this intervention was as much as 1-5%, this could still be a huge net positive for my health! I don’t take approaches that are this extreme regardless, and I try to keep the risk side of my risk/reward ratio low independently of the level of potential reward in attempt to account for this uncertainty. I am also not aware of many interventions that seem to have very high numbers in both the numerator and denominator here, although I am pretty certain that they do exist; I don’t currently take anything that I think has notably detrimental side-effects for the time being.

Is it fair to call this approach Pascallian?

The original nature of Pascal’s wager is that of extreme probabilities resulting in positive expected values, but the numbers that we are operating with are nowhere near as extreme as they could be. It is probably not a good idea to take 10,000 supplements, each of which have a 0.1% chance of extending your lifespan by a year for many reasons (similarly, if 10,000 people that claimed to be God all offered me immortality for a small fee, I would hope to decline all of their offers unless sufficient evidence was provided by one).

As I’m not arguing in favor of taking hundreds or thousands of supplements in the hopes that I strike gold with a few of them, it may be worth noting that ‘Pascallian Longevity’ would be a poor label for my strategy. Regardless, taking just 5-10 longevity interventions with a strong upside potential seems to be significantly more than almost everyone is doing already, so I still stand by my claim that there are many free lunches (free banquets, if you ask me) in this area, and I am very optimistic about the types of longevity interventions we’ll find in the coming decades.

Open to any corrections/comments on Twitter or any medium on my about page

Does 17α-estradiol/estrogen extend male human lifespan?

17α-estradiol is a relatively (or completely) non-feminizing form of estradiol (E2), or estrogen. It is a naturally occurring enantiomer of 17β-estradiol (the much more common form of estradiol, usually just referred to as ‘estradiol’) which is found in both male and female humans. This post a a brief essay that discusses the prospect of it extending lifespan in humans. There are two primary types of estrogen receptors, ERα and Erβ, and as you may expect, 17α-estradiol appears to show a stronger binding affinity for ERα. It has a very low binding affinity in locations that generally induce feminization (which appear to be sometimes be both ERα and ERβ), so it’s also possible to take as a male without significantly altering one’s appearance towards the opposite gender. Although we can definitively point to a plethora of effects of regular estrogen, it is difficult to tell what the true purpose of 17α-estradiol is in humans, with Stout et al. (2016) stating “the physiological functions of endogenous 17α-E2 are unclear”. There is evidence it has neuroprotective properties, can help treat Parkinson’s disease, cerebrovascular disease, and much more. This likely involves ER-X, which in turn activates MAPK/ERK and many, many other things down the line (as usual..), but it’s difficult to know for certain. Although these reasons were among the reasons that researchers took into account when deciding to dedicate funding to testing 17α-estradiol in mice for longevity effects, subsequent papers have found more exciting mechanisms of action which are elaborated upon below. For some interesting further reading on this topic that goes into more detail exploring possible mechanisms of action here I’d also suggest reading the following papers: Castration delays epigenetic aging and feminizes DNA methylation at androgen-regulated loci, Hypermethylation of estrogen receptor-alpha gene in atheromatosis patients and its correlation with homocysteine.

17α-estradiol has been found to consistently and significantly extend the median lifespan of male mice, including by the NIH’s Intervention Testing Program, the closest thing we have to a gold standard of longevity RCT experimentation in mice, where three studies are rigorously performed at three separate locations, allowing the results to be instantly compared and reproduced by the two other parties and locations upon completion. Strong et al. (2016) find that 17α-estradiol extends median lifespan of male mice by an average of 19% (26%, 23%, and 9% from the three independent testing sites), and increased the maximum age by an average of 12% (21%, 8%, and 8% from the three testing sites, using the 90th percentile). Harrison et al. (2014) similarly find that median male lifespan was increased by 12%, but did not find an increase in maximum lifespan, and these results have been replicated even more in recent years.

These are some impressive results for such a common and simple endogenous substance! One of the first things we notice is that this effect only applies to males, with female lifespan (both median and maximum) being unaffected. As the substance in question is an estrogen, we can assume that this is either due to female mice already having this benefit, as they already have a sufficient level of it, or that something more complex is at play, and there is a different downstream pathway that is only being activated in males for some reason (more on this later). I had initially assumed the former hypothesis was at least a partial explanation, having known that females consistently live longer than males when it comes to humans, and that this was obviously biological in nature. However, it’s much more complicated in mice as females do not always outlive males, and in fact many times the opposite is true. One meta-analysis (good overview, original book source) finds 65 studies where males lived longer and 51 where females lived longer, with this often depending on the strain of mice used, which varies greatly depending on the type of reseasrch and time period. Regardless, it’s clear there is much more at play in this scenario, and perhaps something special about 17α-estradiol in particular.

Although the ITP studies initially included 17α-estradiol due to the reasons mentioned in the first paragraph, later research such as Stout et al. (2016) has now found that 17α-estradiol not only increased AMPK levels (as some other notable longevity substances such as Metformin also do), but also reduced mTOR activity (complex 1!) in visceral adipose tissue, which is rather reminiscent of Rapamycin, which has extended the lifespan of every organism we have performed an RCT with thus far (and likely can in humans too, if you ask me). In a way, this is significantly more exciting, because it gives us a much more plausible way to explain the lifespan extension effects we are noticing. However, it is also partially a disappointment: if these effects are the real reasons why 17α-estradiol extends male mice lifespan, then this substance may offer us nothing that we do not already have via rapamycin and metformin, among others. The paper also noted that fasting glucose, insulin, and glycosylated hemoglobin were reduced along with inflammatory markers improving. These are similar to the types of positive side effects we would expect from a longevity agent, and the study also notes that no feminization nor cardiac dysfunction occurred.

How do these effects (such as AMPK and mTOR modulation) occur? I don’t know, and apparently neither does anyone else. As is often the unfortunate case in biology, the paper has this to say: “The signaling mechanism(s) by which 17α-E2 elicits downstream effects remains elusive despite having been investigated for several decades”. Perhaps just a few more decades to go and this section will be updated with more information, then. Mann et al (2020) find that male mice without ERα do not benefit from 17α-estradiol, which helps us narrow down the first step by excluding Erβ, ER-X and other less-predictable initial mechanisms. Interestingly, they also note that “both 17α-estradiol and 17β-estradiol elicit similar genomic binding and transcriptional activation of ERα”, which would leave us with the question of why we are focusing on 17α-estradiol specifically, if 17β-estradiol (which is much more common) suffices as well. Importantly, they also seem to think changes in the liver might be involved. Garratt et al. (2018) add that distinct sex-specific changes in the metabolomic profile of the liver and plasma were found, and also notes that the longevity benefit for males disappears post-castration. They first supplement males and females, showing many differences related to metabolism including with amino acids. Then they use castrated males and notice that their profiles are the same as the control group, and thus conclude that they are no longer being positively affected by 17α-estradiol. I am unsure if we should be focusing on the AMKP/mTOR effects (which are very relevant to longevity) or on the liver/metabolic effects (which are also very relevant), or if these are in fact just two different temporal points on the same biological pathway which we don’t yet fully understand, but this helps us connect at least a few more dots.

All of the above sounds exciting, but it’s also all in mice. Sometimes this is useful, as mice are actually quite similar to humans (more so than many may expect), but a lot of it is also less useful or outright misleading. I cannot find a way to take only 17α-estradiol in a safe way as a human, however there is a topical cream of it (alfatradiol) which is used to treat pattern hair loss.

Luckily, one thing that the ITP study found was that 17α-estradiol was among one of the substances that seems to perform well with respect to longevity (if not fully) when given later in life (this has replicated afterwards as well), contrary to some others which have the best effect when started in youth and continued until death. In theory I wouldn’t mind waiting a decade or two until we have a better idea of what is going on here, after which point I would hope we have more fruitful and actionable results (especially in humans); although at the same time there’s likely many reasonable and safe ways we can go about achieving this (hopeful) effect in human males (assigned at birth) already, either via a type of estrogen or an estrogenic drug such as a SERM.

It is worth reminding ourselves that 17α-estradiol is already present in humans, and in both sexes, with women generally having significantly higher levels, as one expects of estrogen. Similarly, regular estrogen binds to both estrogen receptors, including our target, which we now know to be the alpha receptor. Given this, is it possible that just taking regular estradiol (for example, estradiol valerate, which for most purposes ends up biologically equivalent to endogenous estradiol and thus also binds to both primary estrogen receptors) to increase the levels of estrogen is a potential longevity intervention?

This is a difficult question to answer with the data currently available, although there are millions of persons assigned male at birth that are already on various forms of estradiol for various reasons, one of them being to assist in gender transition from male to female. As the lifespan benefit only applied to male (assigned at birth) mice, there would be benefits to analyzing these cohorts for more information, especially if we were able to have DNA methylation clocks used on these groups alongside a control (although this would not be a true RCT, as which persons decide to undergo feminizing HRT would not be random, I suspect we could still get the information we’d want with a good sample size).

There are other potential avenues of statistical analysis that could be attempted here, although they prove to be difficult for various reasons. Most male to female transgender individuals decide to transition earlier in their life, and this was also a particularly uncommon choice to make many decades ago in comparison to the present, so we have very few deaths due to age-related causes that we would be able to analyze to attain a proper hazard ratio. Even if we waited a long time for this (or had this data already), it would be terribly confounded due to the lack of randomization and many potential selection effects. Even so, one of the following must be true:

  • 17α-estradiol does not extend male (assigned at birth) human lifespan
  • 17α-estradiol does extend male (assigned at birth) human lifespan, however this does not apply to most/any transgender (m->f) individuals. This could be due to insufficient dosage, insufficient affinity for the alpha receptor, the inclusion of 17β-estradiol, the common addition of other substances such as anti-androgens, or another unknown factors/confounders
  • 17α-estradiol does extend male (assigned at birth) human lifespan, and this effect therefore does apply to most transgender (m->f) individuals, however we have either failed to notice it completely, or other effects/confounding variables ablate this, for example an increased risk of blood clots from estrogen supplementation (which depends greatly on the route of administration as well as type of estrogen used) or various potential side-effects from anti-androgen usage

Option one is certainly a possibility, as it always is in longevity when all of our studies are only in mice. We could differ too much from mice for the mechanism of action to apply to us (perhaps if it is related to metabolism or some newer subset of liver functionality), or if the mechanism of action is indeed the AMPK/mTOR pathways, perhaps 17α-estradiol does not modulate these in humans as it does in mice. This could have implications for other potential longevity agents such as metformin and rapamycin in humans as well, which also heavily involve these pathways, which could cause these agents to interplay synergistically or perhaps cancel one another out, as there may be no further benefit that can be gained after one of these agents is already taken at the optimal dosage. It is worth noting that many aspects related to AMPK/mTOR and DNA methylation are heavily evolutionary conserved as well (mTOR quite strongly, which is another reason why rapamycin likely extends human lifespan). We also already know that human females have longer lifespans than males for biological reasons, and that there are quite a few reports that the lifespan of castrated males is significantly increased. If 17α-estradiol (or estradiol valerate perhaps) does not extend human male lifespan, I would have to believe there is some other similar route that likely does, and we just have to find the best way to go about pursuing it.

Option two is, in my opinion, moderately plausible. It could the case that when we do have groups that supplement estradiol, the dosage taken is nowhere near sufficient for a noticeable longevity improvement, and that if we would simply increase it by some factor, longevity benefits would become apparent. There does seem to be a dose-dependent relationship for the longevity benefits in mice, and it may be possible that estrogen receptor alpha simply isn’t being agonized nearly enough. This may depend on the type of estrogen and route of administration used, as well as other drugs that may be taken (for example, most male to female transgender individuals take an anti-androgen as well as an estrogen, and this could potentially ablate benefits). My personal conjecture would be that estrogen monotherapy via injections would have the best probability of a longevity benefit for those assigned male at birth, although modulating or combining this with SERMs may also be of interest, although much more experimental and difficult to get right (I may add more to this later as this is a pretty interesting avenue to me for multiple reasons).

As for option three, it may seem difficult at first glance to think that millions of male to female transgender individuals are all currently supplementing a substance that may increase their lifespan by 5-20%, but yet none of us (or them) have noticed this yet. However, there are no preventative reasons for why this couldn’t be the case, nor statistical evidence against this possibility. It could even be that suppressing testosterone and activating estrogen receptor alpha are additive in nature, and we end up with a particularly impressive lifespan extension effect from conventional feminizing HRT.

Although I obviously cannot be sure of any specifics, I do think there is likely some hormonal intervention that should significantly increase male (assigned at birth) human lifespan, but that we just may need another decade or two to get the optimal intervention figured out properly. It would be great to have substances like 17α-estradiol in human trials already, as the potential ROI for successful longevity interventions is massive both in terms of billions of additional QALYs and trillions of dollars saved in healthcare expenditure.

In conclusion, 17α-estradiol might notably extend human lifespan for those assigned male at birth. There are many potential mechanisms of action that could cause this, with the most interesting one perhaps being activation of the mTOR and AMPK pathways, resulting in more ‘feminine’ DNA methylation. This longevity benefit, if it exists, may apply to many male to female transgender individuals, or could also be weaker or stronger for various reasons, such as due to the common usage of anti-androgens. If this longevity benefit does not apply to these groups, there may be alternative hormonal interventions that work instead, such as supplementing 17α-estradiol directly, using a SERM with a strong binding affinity in the right areas, or other modifications to the HPG axis that reduce some potential negative longevity effects of testosterone.

Disclaimer: I’m a random person on the Internet and none of this is medical advice. I’d like to rewrite and expand on the potential mechanisms of actions in this post and talk a bit more about what I do myself in this area some time too. Feel free to mention any corrections or comments to me (see: About page).

Supplements


Last updated: Oct 26 2024

This document is an updated list of most of the supplements/drugs that I take daily, as well as notes on some other interesting substances. It contains information on exactly what I take, how much of it, how much it costs, and some information on the substance which should roughly explain my reasons for taking it.

May 7th 2024 update: I have replaced many of the pills in this post (but not all of them!), with pills from Blueprint, although I don’t consume any of the auxiliary products. I would strongly suggest reading my post and review of Blueprint as it is now an essential addendum to this post. It saves quite a bit of management time as well.

The first list contains supplements I take daily, with the second list containing supplements that I do not take daily but that nonetheless seem interesting, while the third list contains supplements that are interesting, but that seem less suitable for safe human consumption or speculation. As of 2023, many supplements on my list have been discontinued, and this is mentioned next to the dosage.

The focus of my supplementation is to find substances that are both very safe and also have a notable probability of improving health, lifespan, well-being, or productivity, with the ultimate goal being to significantly slow aging, even if it’s difficult to do at this time. I don’t take many nootropics as I don’t think there’s much room for intelligence improvements just from ingesting simple compounds (evolution has already put quite a bit of time into making us smart), with the exception of treating some deficiency or other issue, or improving productivity/concentration, which definitely possible (see: caffeine, modafinil, adderall, many others), but distinct from intelligence. It is worth noting this list is very specific to myself: if I had a perfectly optimal diet and lifestyle, I would likely take next to zero supplements. Like most mortals, my diet and lifestyle are definitely not perfect (and indeed, even knowing what a perfect diet would be for yourself can be intractable on its own), thus there’s always room for improvement.

This post is not an attempt to convince anyone of something specific or to suggest anything specific, but I have decided to publish it publicly in order to better keep myself accountable for my reasoning, receive potential feedback, and to otherwise share some potentially useful short summaries of information. Concordantly, I’m not a doctor and this post contains no medical advice or suggestions. Which supplements, if any, one should take, is a very personal matter, as it is dependent upon many unique traits such as one’s age, diet, lifestyle, genes, risk preference, finances, and more.

Notes on supplements

Section tl;dr: most supplement marketing tactics, websites, videos, brands, etc, are bullshit. Do your own research, ask questions, and be quantitative.

Although there are a lot of supplements that would be beneficial to many people, caution must be exercised both with research and purchasing. Supplements in the United States have very little regulation, with some sellers having poor quality control, fraudulent research, marketing, claims, and poor ingredient composition and sourcing. The supplement industry is worth billions of dollars and has many bad actors incentivized by profit over truth, so time and care must be exercised in order to find out what works best for you personally. Certainly, research can be found promising positive effects from thousands of various substances – but taking all of them would be impractical, expensive, and likely downright harmful.

It’s also important to pay attention to brands as well as to think logically about which supplements have quality differentials that are worth paying more for. For example, Vitamin D and Glycine are easy to synthesize, and it’s likely that cheaper versions of these supplements are just as good as more expensive versions. This may not be the case for a supplement like fish oil however, which is derived from complex living organisms that vary significantly on factors such as their environment, diet, quality controls, the types of fish used, and so on.

Concordantly, one of the strongest criteria I look for in most supplements is safety, which many times (not always!) comes alongside popularity and/or significant research affirming the safety of compounds. As many supplements offer marginal benefits at best, it would be irrational to purchase and consume them if they had a good chance of causing harm, as this would easily cause them to fail a basic cost/benefit or risk/reward analysis (there’s definitely some cool compounds that have very high coefficients in both the numerator and denominator of their risk/reward ratio too, so careful decision making is required).

Ideally one should attempt to find quantitative measures to objectively evaluate if a substance is really helping them in the desired manner. In some cases this is both easy and cheap to do, for example with Vitamin D supplementation, which costs only a few cents a day, does not need to be compared to a placebo, and can be tested for in your blood for as little as $30. In other cases, proper testing is difficult or impossible and may require significant effort and time for very little benefit. Keeping one’s lifestyle, diet, and other factors a perfect experimental constant is certainly difficult, as is performing blind experiments on yourself, collecting and analyzing data, and finding the proper quantitative desideratum to test yourself on to begin with; testing if something specific has definitively made you slightly smarter, happier, healthier, more productive, or extended your lifespan, is certainly difficult if not occasionally impossible to do in a scientifically rigorous manner with a sample size of one.

Lastly, which supplements benefit an individual is a very personal matter. Vegans may want to take some supplements that are found in meat. Carnivores may want to take some supplements that are found in plants. Supplements that may benefit the elderly or those with common conditions such as hypercholesterolemia or diabetes often seem to be much less useful for otherwise healthy individuals. Indeed, for individuals that have many health conditions including the elderly, there’s significantly more that can be gained from supplementation, as there are many more problems that can be improved upon (although there are also be more risks as well). Supplements will effect someone differently depending on their weight, age, genetics, health, diet, and many other factors.

This means that it’s a bad idea to copy any individual’s routines completely, even if it’s a lot of work to do your own planning, research, and testing. It is also worth mentioning that the word ‘supplement’ is used here as a relatively generic word, simply meaning that the substance is only regulated as a food within the United States and thus requires no prescription (unless otherwise mentioned), but also offers few guarantees in terms of efficacy or consistency.

If you take 2 or more pills a day, the best pill organizer+dispenser by far is this (Image from Amazon reviews)

See also

If you find this page interesting, here are some similar pages from others that you may enjoy:

Supplements

Name: Vitamin D3

Dosage: 2,000+ IU (50+ µg, included in BP)

Cost/Day: $0.03

Information: Vitamin D3 [Examine, webmd, Wikipedia] (colecalciferol) is a vitamin made by the skin when exposed to sunlight. It’s a common deficiency and is very cheap to fix. The benefits of supplementation are generally found to be minor (it’s still a bit controversial if supplementation is beneficial at all, although I lean towards yes personally), but as I was notably deficient and it’s one of the cheapest supplements, it’s an easy choice for me. There is a lot of literature on Vitamin D, and many highly-powered studies including meta-analysis will often find only minor beneficial effects, but there are also quite a few studies that show notable benefits, including many related to covid as of late 2020. As noted above, this is also an easy supplement to receive a blood test for and ensure you’re taking the optimal dosage. I take half of my vitamin D earlier in the day without a meal, and the other half with my food, contrary to most other supplements. See also: Gwern on Vitamin D as well as on it harming sleep if taken at night

Name: Vitamin B6

Dosage: 1.4mg (included in BP)

Cost/Day: $0.04

Information: Vitamin B6 [Examine, webmd, Wikipedia]. This is included in other supplements I have and is otherwise not notable.

Name: Vitamin B12

Dosage: 125mcg (included in BP)

Cost/Day: $0.04

Information: Vitamin B12 [Examine, webmd, Wikipedia] (vitamin B3). This is included in other supplements I have and is otherwise not notable (although if you’re on metformin or a few others I used to try it’s better to add it, else unlikely to be deficient).

Name: Vitamin C

Dosage: 500mg

Cost/Day: $0.03

Information: Vitamin C [Examine, webmd, Wikipedia] (ascorbic acid) has a variety of effects, and being a vitamin, is an essential part of a human diet. I supplement vitamin C in order to fix a tested deficiency. I’m rarely deficient but it doesn’t hurt.

Name: Fish Oil

Dosage: 1-3g+ (depends on diet and estimated omega-6 intake)

Cost/day: $0.10 (1g)

Information: Fish oil [Examine, webmd, Wikipedia] (omega-3 EPA+DHA) is another common and cheap supplement. Although many studies find minor or sometimes no benefits, many others find a large amount of diverse improvements, even if they are minor. It’s likely that the ratio of omega-6/omega-3 you consume is important, with most people consuming far too much omega-6 (which won’t hurt to reduce regardless) and not enough omega-3, so dosing of fish oil should be based on your diet, which is easily more than an order of magnitude more important to begin with.

Similarly, it’s probably good advice to 1) reduce fried food intake, 2) replace oils high in linoleic acid such as safflower and sunflower oils with oils that have much less such as coconut oil and olive oil (2021 edit: I am less sure about this than I was before, although I still lean towards it myself Deciding which oils/fats (and with what / prepared in which manner) are bad for you continues to be an extremely hard problem. See A Comprehensive Rebuttal to Seed Oil Sophistry for an example of a comprehensive potential counter-argument in the great seed oil/fat debate) and 3) increase my supplementation of high-quality omega 3s (fish oil) when I think I’ve had more omega 6s. For example, if I do decide to eat a lot of fried food, I take several fish oils, compared to only 1-2g normally. I also like to note that fish oil seems to be one of the supplements worth spending a bit more money on – quality is high-variance and of higher importance, and unlike other supplements which can trivially be synthesized, the production processes of fish oil vary greatly depending on the company and product. Also see this review on pubmed and this summary on Wikipedia

Name: Garlic

Dosage: 1-3g (included in BP now)

Cost/day: $0.02 (1g)

Information: Garlic [Examine, webmd, Wikipedia] is another popular and cheap supplement. There’s good evidence that it improves lipid profiles, may help with some cancer risks, and may have other very minor benefits (may activate AMPK too?). The most desirable compound in garlic is allicin, which is diluted in garlic that is microwaved, boiled, or aged. Dosage should be based on which type of garlic is being consumed. As many people enjoy the taste of garlic, it’s a good candidate to include in meals as well (which is probably optimal for most things, resulting in notably higher bioavailability on average).

Name: Olive Leaf Extract

Dosage: 500mg (discontinued, decided it was too low-value)

Cost/day: $0.02

Information: Olive Leaf Extract [Examine, Wikipedia] is a cheap and easy way to hopefully mimic the benefits of olive oil, as the leaves of the olive tree contain good amounts of relevant olive phenols such as oleuropein. It may still be better to consume olive oil instead, which is still a great thing to add to meals, but with such a low cost, this seems worth inclusion to me. I am not particularly excited about this supplement but have included it regardless.

Name: Magnesium Citrate (replaced with magnesium glycinate)

Dosage: 250mg (magnesium glycinate: 1500mg)

Source: $0.05

Information: Magnesium [Examine, webmd, Wikipedia, Gwern] deficiencies are moderately common (up to 45-60%) and easily fixed. Fixing a magnesium deficiency is cheap and seems to offer quite a few minor general benefits, and also sleep and anxiety improvements for some. Depending on your diet, supplementation may be unnecessary. Magnesium comes in a lot of different forms so close attention is needed when purchasing. I stick to citrate as it makes dosing easier, has good bio-availability, and is unlikely to cause digestion issues. The above Gwern link is a great resource on Magnesium as well. This is also another supplement that is easy to get before and after blood tests for to see if your intervention performed as desired.

If you want to have both magnesium and glycine, magnesium glycinate can be purchased which contains both, generally in a ratio of ~14% magnesium to ~86% glycine. This can be a great supplement to take before bed.

Name: Vitamin K2 MK-7

Dosage: 100mcg (sometimes included in BP)

Cost/day: $0.00

Information: Vitamin K [Examine, webmd, Wikipedia], like most vitamins, is primarily beneficial for those deficient in it, so it is best to examine your diet thoroughly and/or be tested. There are several forms of vitamin K, and also several forms of vitamin K2. Vitamin K2 MK-7 seems to be one of the best forms to take in general, although K1 has decent evidence in favor of it as well, depending on one’s circumstances.

Name: Glucosamine Sulfate

Dosage: 1-3g (often paired with MSM, back on as of Oct 2024)

Cost/day: $0.19

Information: Glucosamine [Examine, webmd, Wikipedia] is an amino sugar derived from shellfish that is commonly taken by the elderly to improve joint functionality and reduce pain. Glucosamine extends the lifespan of some mammals in studies, potentially in ways that are evolutionarily conserved, activating AMPK and therefore having slight similarity with metformin. Glucosamine may also induce autophagy via an mTOR-independent pathway, which may be the mechanism of action for its effects on lifespan. Due to its popularity as a supplement we can be relatively sure of its safety as well. Chondroiton is commonly included with glucosamine supplements, which appears very uninteresting for my own purposes, so I look for pure d-glucosamine/glucosamine sulfate, which is generally cheap.

Name: Lithium Orotate

Dosage: 5mg (included in BP)

Cost/day: $0.08

Information: Lithium [webmd, Wikipedia] is a metallic element that is often found in foods such as legumes, grains, vegetables, and in some places, drinking water. Lithium is generally present in most diets in notable quantities, and in slightly larger quantities in diets such as the Mediterranean diet. For purposes such as mine, it is supplemented at low doses, which is much different (~1/100th the dose) from the doses sometimes prescribed for some psychiatric disorders. Lithium reduces mortality, stabilizes mood, and promotes longevity, likely via multiple pathways, although the specific mechanisms of action are difficult to discern and more research is needed. As I was tested for lithium and had a very low concentration in my blood, I decided it was worth it to supplement it n low doses.

Name: Glycine

Dosage: ~10g+

Cost/day: $0.20

Information: Glycine [Examine, webmd, Wikipedia] is an amino acid that is often supplemented to improve sleep. Better sleep is formidable by itself, but some studies find that it increases lifespan in organisms via methods that may be evolutionarily conserved. Although glycine is present in some foods and is also synthesized by your body, it may be the case that glycine deficiencies are technically common in humans, as the amount that is able to readily be synthesized in-vivo is sub-optimal. This may be relatively asymptomatic from an individual perspective and only manifest itself via a slight probabilistic decrease in healthspan/lifespan, although users often notice quite a few improvements besides just better sleep. Given its heavy involvement in collagen, I wouldn’t be surprised to see skin benefits over the long-term. Glycine may improve insulin sensitivity and other similar metrics. There may be some longevity benefits of a diet low in methionine (meat, fish, eggs, etc) as well, which may be related to one’s effective glycine/methionine ratio. I still consume a lot of methionine from common sources such as chicken breast, so this is another potential way in which glycine could be beneficial. Glycine appears to be very safe, even in larger doses, and is relatively cheap, more so as a powder, as is the case of most substances. See also Induction of glutathione biosynthesis by glycine-based treatment mitigates atherosclerosis

I often take glycine in powder form, which makes it easy to consume arbitrary doses (including the ability to add it to drinks or meals if desired), and notably cheaper than buying large amounts of pills, which are generally 1g each at most (you can’t fit more in a pill). On days where I consume a lot of meat such as beef, I take significantly more glycine. This is partially an attempt to optimize my diet’s methionine/glycine ratio, but also intended to do a better job at mimicking what a more traditional consumption of animal meat might have been like, from an evolutionary perspective, which would have included much more glycine than most of us receive in the common cuts of meat that consumers generally use. As a side note, glycine does taste sweet and dissolves in water, so it’s a great addition to tea or coffee.

Regardless, given glycine’s near-flawlessly safe and simple profile, there should be zero harm in having a bit too much. My larger dosage was arrived at from a combination of the papers linked above (and linked to by those links), as well as some reasoning about my diet (high in methionine) and lifestyle. Unfortunately even with a blood plasma test of amino acid concentrations, it’s difficult to know if this is the optimal dose for human longevity, or if it is even helpful at all to begin with, but the cost/benefit analysis here still seems to lean heavily into the green. As a simple and common amino acid, it seems pretty difficult to hurt yourself with glycine, so even taking 10-50g a day shouldn’t be harmful.

Name: Allulose

Dosage: 0-10g+ (varies, uncommonly used as a sweetener with some meals)

Cost/day: $0-0.50

Information: Allulose is an amazing alternative to sugar with 90% fewer calories and the ability to decrease your blood sugar in response to high-carbohydrate meals. I wrote a full post on Allulose here

Name: Bacopa

Dosage: 445mg (discontinued, likely low value)

Cost/day: $0.09

Information: Bacopa [Examine, webmd, Wikipedia] is an herb that seems to offer reliable but likely very minor improvements to some areas of memory and general cognition. Effects are likely difficult to notice without rigorous placebo-controlled self-testing, but it is relatively safe and cheap regardless. Digestive side-effects aren’t uncommon, as is the case with many herbal supplements. In the future I’d like to replace my bacopa with a placebo and attempt to look for differences in quantitative cognitive performance metrics such as my anki recollection, but performing this experiment well is difficult, both because the effect is very minor and because a proper experiment with n=1 is very difficult. I don’t think bacopa is likely to be a big deal, but I’ve added it for now. As of 2021 I sometimes don’t take this, as it may result in slightly poorer digestion, and the benefit was marginal at best, but I have left it on this list for now.

Name: Ashwagandha

Dosage: 470mg (occasionally discontinued due to potential digestive side-effects)

Cost/day: $0.15

Information: Ashwagandha [Examine, webmd, Wikipedia] is an herb that offers potential anxiety and lipid profile improvements. Some users report that it reduces anxiety and stress significantly, with some studies showing up to a 28% reductions in cortisol (in subjects with elevated levels). Lipid improvements can also be notable, with some studies showing a 10% reduction of total cholesterol, even in healthy subjects. As an uncommon herbal supplement, digestive side effects are a notable probability. Ashwagandha is likely worth trying if you feel that you have untreated anxiety, you never know when you’ll get lucky with how much of a benefit you receive from some things. Although not scientifically rigorous, it did appear like the periods during which I took ashwaganda resulted in a notably improved lipid profile, consistent with what many studies have shown. I’d like to test this on myself in an n=1 RCT both for lipids and for potential relaxation/anxiolytic effects, but haven’t gotten around to it.

Name: Fisetin

Dosage: 0-1500mg (varies, intermittently/rarely taken, but now included in BP at 100mg/day)

Cost/day: $0-3.80 (varies)

Information: Fisetin [Wikipedia] is a plant flavonol that is found in several vegetables and fruits, with the highest concentration being found in strawberries. Fisetin is a sirtuin-activating compound and has extended the lifespan of yeast, worms, flies, and mice. It has been shown to be a strong senolytic agent and may induce apoptosis and other effects via the PI3K/AKT/mTOR pathway. I do not take it every day and am quite uncertain about what the right regime for supplementation should be for it, but currently take ~1,500mg of it for 4 days continually once every few months. This likely has room for improvement and may change in the future. I’d like to write more about fisetin in order to justify this, but haven’t yet found the time. Here’s a single picture of a pretty mouse instead.

Name: Astaxanthin

Dosage: 12mg (included in BP)

Cost/day: $0.15

Information: Astaxanthin [Wikipedia, webmd, Examine] is a carotenoid generally derived from seafood. It’s suggested that it exhibits photoprotective, antioxidant, and anti-inflammatory effects, and has improved triglyceride and cholesterol levels as well as oxidative stress in humans, although not in completely healthy individuals.

Astaxanthin has increased the life span of C. elegans by 16-30%, with the authors stating “These results suggest that AX protects the cell organelle mitochondria and nucleus of the nematode, resulting in a lifespan extension via an Ins/IGF-1 signaling pathway during normal aging, at least in part”. While this is certainly interesting, expecting such a lifespan increase in humans is far too optimistic from this case alone.

However, Astaxanthin may be able to activate FOXO3 in humans, an important gene for human longevity which is present in many centenarians. Some other well-known natural compounds such as resveratrol and curcumin also interface with FoxOs, although these substances are still relatively speculative as far as anti-aging effects in humans go, even if they do have many strong supporters.

There’s some other interesting potential effects of astaxanthin, with some papers showing that it increases neural stem cell proliferation and may be useful to help curb dementia, and other papers showing that it can improve skin health and appearance, leading it to become an ingredient in some cosmetics.

Astaxanthin appears to be very safe in humans and is a relatively popular dietary supplement, with a market estimated at over $500M USD annually, although the majority of this supply is used as a component in animal feed and cosmetics.

Name: Curcumin

Dosage: 0-500mg (often discontinued, included in BP)

Cost/day: 0-$0.17 (varies)

Curcumin [Examine, webmd, Wikipedia] is a pigment found in tumeric. Curcumin’s strongest benefit seems to be the reduction in inflammation that it offers, although there appear to be some other areas that may be improved as well such as lipid profiles, mental health, potentially improved digestion, and reduced pain with some conditions such as osteoarthritis. It may exhibit a notable anti-tumor effect via apoptosis. It seems relatively safe, although has low bio-availability, so is often taken with substances to increases its availability such as piperine, or taken in an otherwise proprietary formulation that generally has some type of oil that improves bio-availability instead. As inflammation is important in aging and many other diseases, it’s something that is nice to be aware of.

I only sometimes take curcumin depending on my inflammation levels, generally measured via c-reactive protein.. When it is negligibly low, I stop taking it, and if I ever see it creep up in blood test results, I resume supplementation. Curcumin can be potentially tough on the liver, and in large doses has a greater potential to cause adverse affects. Some papers show quite a few potential drug interactions that can occur by taking curcumin, especially in larger doses, and via a variety of mechanisms, including its affect on platelets and potential interactions with enzymes such as CYP3A4, potentially affecting the metabolism of a large amount of drugs.

Name: Berberine

Dosage: 1.2g (discontinued, replaced with metformin which was then deprecated)

Cost/day: $0.28

Information: Berberine (Examine, webmd, Wikipedia] is an extract from various plants. It appears to be a pretty strong natural mimetic of metformin, a popular drug for diabetes with many alluring potential anti-aging properties. It often improves lipid profiles and blood glucose, and thus may have many of the long-term benefits that metformin may have. Concordantly, the possibility for digestive side-effects is relatively high, and it’s sometimes taken several times a day in smaller doses as a result. Examine suggestions that it also inhibits enzymes such as CYP2D6 to some extent, which could lead to undesirable interactions with some drugs. It’s likely better to be on metformin than berberine, as drugs are kept to a significantly higher regulatory standard than supplements are and we have much more data on users of metformin.

Name: Caffeine

Dosage: 50-200mg

Cost/day: $0.10 (much higher If drinks are considered)

Information: Caffeine [Examine, webmd, Wikipedia] is something you likely don’t need an introduction to. I try to keep my dosage relatively low to avoid issues with tolerance, using a combination of coffee, tea, or caffeine pills, depending on the amount desired and my mood. When taking 100mg or more of caffeine, I generally have 100mg of L-theanine as well.

Also worth noting you can buy caffeine mints or the nicer primary metabolite, paraxanthine

Name: L-theanine

Dosage: 0-200mg, (not taken often, 100mg if taken generally)

Cost/day: $0.20

Information: L-theanine [Examine, webmd, Wikipedia] is an amino acid that is present in tea leaves which is often combined with caffeine for supposedly synergistic effects on cognition and mood, improving the upsides of caffeine while helping to ameliorate some of the potential downsides. I generally only take it if I’m having more caffeine than average on a given day, since I keep my caffeine intake pretty low.

Name: Melatonin

Dosage: ~300mcg or less (not taken consistently)

Cost/day: $0.04

Information: Melatonin [Examine, webmd, Wikipedia, Gwern] is a hormone secreted by the pineal gland with an important role in regulating your sleep cycle. Melatonin production can be suppressed in many individuals that are otherwise healthy, for example by exposure to blue light from computer screens before bed (which solutions like the program f.lux and blue-light blocking glasses attempt to solve). The generally accepted benefits of melatonin are a reduction in the time to fall asleep, although some individuals claim that it reduces their need for sleep as well (often by 15-60 minutes). For those with sleep conditions such as insomnia or jet lag (or just being older in many cases), melatonin can be a much greater aid in improving sleep and quality of life.

One meta-analysis (K=10, N=653), found melatonin supplementation may have helped significantly reduce some instances of cancer mortality (R = 0.66 after 1yr). Some studies also find improvements in gastroprotection, healing and reducing the rate of stomach ulcers.

Melatonin has increased the lifespan of some mice by 18%, primarily given as a supplement later in life in an attempt to give older mice more effective pineal gland functionality (directly giving older mice the pineal glands of younger mice was also performed, which also was very beneficial). Melatonin levels similarly decline with age in humans (as most important things do), and supplementation may be increasingly beneficial as one ages.

The proper dose of melatonin to take varies between individuals and many melatonin pills for sale are dosed too high (5-10mg), so approximate self-experimentation can be used such as starting with 0.5mg and increasing your dosage until benefits are noticed. The above link to Gwern’s website on Melatonin points to a good in-depth analysis that is worth reading as well.

A few other things you may want to be aware of if you’re interested in melatonin is that you can buy delayed-release and extended-release versions easily otc. Additionally, you can use a beta-blocker like propanolol to inhibit melatonin synthesis to assist in circadian rhythm regulation.

Name: Spermidine

Dosage: ~1-10+mg (various sources, now included in BP, previous source was wheat germ)

Cost/day: ~$0.05

As of Jul 23 2020, I’ve added Spermidine to the list of what I take, currently taking it via wheat germ. Spermidine is a polyamine compound that can be found in aged cheese, soybeans, wheat germs, and human sperm. Supplementation of spermidine has extended lifespan across species, including in yeast, nematodes, flies, and mice. In humans, spermidine levels decline with aging. Spermidine can delay aging in humans, has notable cardioprotective capabilities, induces autophogy, improves healthspan, and more. Lots of wonderful results just searching for spermadine on pubmed.

Dosing for spermidine is difficult. It’s obviously very safe, but 1mg is likely not enough for the level of effect that we want. The average daily nutritional intake of spermidine varies from 7 to 25mg, and we can see how much one might want to consume for blood levels of spermidine to increase by 39%: perhaps 10mg per day (calculated by multiplying the 66g of natto consumed per day by its approximate spermidine content of 150mg/kg to yield 10mg per day). Although we don’t have plasma concentrations of spermine and spermidine in humans in relation to mortality, this is available in several mice studies. I need to spend more time on this, but I think one might want to supplement as much as 5-20mg of spermadine per day, assuming that it’s not present in their diet in notable quantities already (which is quite possible, as some Mediterranean, Japanese, and other diets contain notable quantities of it).

I currently consume spermidine via wheat germ, which seems to have around 243mg/kg of spermidine in it. If I wanted 10mg a day, this would result in having to consume 41g of wheat germ per day, which although feasible, is a bit tedious, potentially unsavory depending on the method of consumption, and would also result in an additional 164 calories consumed per day. There are some spermidine supplements on amazon, but I am not sure that I trust any of them very much (with the most recent one having the most obvious fake reviews I have ever seen on a supplement), and many of them are simply wheat germ inside of a capsule, which is not only likely to be an insufficient dosage, but also much more expensive. It may be worth mentioning for some readers that spermidine is also present in human sperm, but not in enough quantities to warrant consumption unless you consume copious amounts of it (~0.1mg per ejaculation, assuming 3.5mL and 31ug/Ml).

See also: collection of relevant spermidine study links and associated video from Mike Lustgarten

Name: Metformin

Dosage: 0.5-1g (discontinued for various reasons)

Cody/day: $0.16

Information: Metformin [webmd, Wikipedia] is a prescription drug for diabetes and is one of the most popular drugs taken by those interested in longevity, often taken for this purpose by individuals without diabetes. Metformin is said to mimic some of the potential benefits of caloric restriction. It increases the lifespan of mice, increasing AMPK activity and antioxidant protection, resulting in reductions in both oxidative damage accumulation and chronic inflammation. Lifespans of other organisms such as silkworms and nematodes are also increased. There exists a vast literature on Metformin with respect to its mechanisms of improving longevity apart from just this; it’s currently the most popular drug taken to combat aging.

Due to the prevalence of diabetes, Metformin has over 80 million users (the vast majority taking it for diabetes), which gives us wonderful data on its safety, with its side effects rarely including anything besides minor gastrointestinal issues. Metformin is also cheap, costing only $5-$25 a month in the United States. For the above reasons and many others, Metformin appears to be one of the best candidates for an anti-aging drug, leading it to become one of the only drugs making clinical progress in this area with trials such as TAME (Targeting Aging with Metformin). Metformin deserves a larger write-up than I’ve given it here, so you’re encouraged to perform your own research on it (just as you should for anything written about on this page).

For long-term Metformin usage, be sure that you are not hypoglycemic, as well as that your levels of vitamin B6 and B12 are in acceptable ranges, as deficiencies in these are slightly associated with Metformin usage. Metformin may also diminish some health improvements from exercise, and although more research is needed, this factor should be considered for non-diabetics considering Metformin usage. See also: Gwern on metformin

Name: Acarbose

Dosage: varies greatly, infrequently taken at the start of meals with high carbohydrates

Cost/day: $0-$1

Information: Acarbose is a simple diabetic drug which inhibits alpha glucosidase, causing your glucose to spike less than it normally would when ingesting carbohydrates. It is very safe and common, especially in countries such as the United States. Various studies on acarbose in mice have consistently shown it to expend lifespan, sometimes as high as 22% in males, generally much less in females. The probability this applies to humans is, in my opinion, moderately likely, although it is unlikely to be nearly as strong of an effect. Although mice have a lot of similarity with humans (more than many would expect!), their digestive system and diet are more dissimilar than most other categories. With that said, this drug is very safe and provably reduces the glucose spikes in your blood that occur when ingesting large amounts of carbohydrates, which in general seems to be a good thing. It therefore has a lot more potential when taken at the start of eating a large pizza rather than a normal meal (unless pizza is your normal meal, in which case it’s hard to blame you, but you should probably eat other things as well).

Name: 17-α-estradiol / estradiol valerate

Dosage: 0 mg / varies

Cost/day: $0-1

Description: 17-α-estradiol (a non-feminizing form of estrogen) significantly extends male mice lifespan, and this may apply to humans as well. This section turned long so I turned it into its own post. I currently micro-dose estrogen and am experimenting with some other potential solutions here myself; I’d like to write more on this and on related HPG interactions and estrogens/androgens in general. Past links included under this.

Male lifespan extension with 17‐α estradiol is linked to a sex‐specific metabolomic response modulated by gonadal hormones in mice https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052402/Acarbose, 17-α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. https://www.ncbi.nlm.nih.gov/pubmed/242455

I’ve messed around with quite a few hormonal profiles but would like a lot more research in this area, especially on SERMs. If you have quality information in this area please message me!

Name: Taurine

Dosage: ~2g

Cost/day: $0.20

Information: Taurine [Wikipedia, Examine.com] is an amino acid plentiful in fish and meat. It gained popularity as a potential supplement for longevity when a study in 2023 showed it it to increase lifespan in mice by 10%+ with life expectancy at 28 months up 18-25% as well as a corresponding increase in healthspan. There are a lot of papers on taurine improving various categories of aging, far too many to even begin to list here. For a broad overview you can check out Effects and Mechanisms of Taurine as a Therapeutic Agent. Some suspect taurine may be one of the more prominent reasons why Mediterraneanesque diets and some Japanese populations have improved longevity. It seems to have notable GABAeric effects, with some reporting that it decreases or increases anxiety at higher doses.

Some foods that are plentiful in taurine include chicken (378mg/100g), tuna (332mg/100g), and slightly less but still large amounts in crab, shrimp, lamb, beef, eggs, and cheese. An equivalent dosage in humans for the longevity results found in mice may be somewhere in the range of 3-8g. This may seem like a large amount for a supplement, but if you were to eat 1lb of chicken that alone would contain ~1.7g. Acquiring notable amounts of taurine without supplementation can be difficult as a vegetarian and near-impossible as a vegan.

It’s also found in many energy drinks, sometimes in quantities as large as 0.5-1g, and there’s a bit of evidence that it may pair well to reduce the jittery aspect of caffeine in a way similar to l-theanine. It seems like 3g/day can be reasonably consumed safely, and I’d suspect that this carries at least up to 5=10g/day, if not much higher. I’m only moderately bullish (at most) on taurine improving human lifespan, especially if one begins with the assumption of a good diet, but I find it really interesting nonetheless.

Name: Semaglutide (now discontinued)

Dosage: 0.15-0.3mg (subcutaneous injection, once per week. may use in the future again)

Cost/day: $1-2 ($30-50/month, but reduced food intake can actually make this profitable to take!)

Description: Semaglutide [Wikipedia] is one of the most important inventions of the century. It is the weight loss drug known as Ozempic, Wegovy, or Rybelsus. There is so much literature on this drug (and it now has millions of prescriptions in the US) that I’m not going to go over it here, but the short version is that it not only works, but it works well, and seems to often have few or no negative side effects, and sometimes even positive side effects, from reduced cardiac events to many reports of improved willpower.

Obesity leads to millions of deaths, and now there is a cure for it which can actually be applied at-scale, even in the presence of relatively unrestrained markets with highly-addictive and caloric food. Semaglutide should receive a Nobel Prize.

Although it is known for being expensive when bought through FDA-approved mediums, it is possible to purchase it safely for significantly less as it is not a controlled substance. As I’m neither a doctor nor a lawyer, you should speak with your doctor if you’re interested in trying it out. If you have injectable (liquid) semaglutide, it should be refrigerated.

2024 update: I’ve discontinued semaglutide for two reasons, the first being that I no longer desire to lose more fat, and the second being that it reduces my hedonic baseline by a bit (that is, all of life is slightly less pleasurable). I may hop on it or try microdosing it in the future.

Name: Rapamycin

Dosage: 4-12mg (schedule and doses vary, taken at most once a week, many other factors)

Cody/day: $1-4

Information: Rapamycin is perhaps the most exciting substance for me in longevity right now. Rapamycin notably extends the lifespan of most organisms we have given it to thus far, but lacks proper research in humans aside from its use as an immunosuppressant. It’s a very popular drug to research in the area of longevity, and deserves a longer write-up than I’ve given it here. It’s also potentially quite dangerous and we have little data in humans (aside from those we give it to for organ transplants), so please don’t take it yourself (Jan 2021 update: mTOR Inhibitors Associated with Higher Cardiovascular Adverse Events ‐ A Large Population Database Analysis). Dosage for rapamycin is a bit tricky. There’s a lot of speculation involved, but it seems like many people converge onto something either like 6-8mg/week, or 8-15mg/2 weeks, perhaps with some breaks between.

2024 Update: Rapamycin blood tests are reasonably available – I currently shoot for around 25-45 ng/mL ~2 hours after initial ingestion as a reasonable baseline.

Out of all of the longevity agents I am interested in and/or take myself, it is likely to be the one that I have the highest hope for in humans. We have a decent understanding of the mechanism (compared to many other things, at least), it works very consistently and strongly in several other organisms, and the mechanism of action is strongly evolutionarily conserved. As for safety concerns, it seems like if taken in a low dosage and infrequently enough, the safety profile improves significantly and it may be a net-plus in many areas (this may be related to mtorc1 vs mtorc2 activation depending on the dosage and timing (it does have a pretty long half-life!), which also makes it seem like it can be taken without actually suppressing one’s immune system or causing some other undesirable effect categories).

Although I do know of many others that take rapamycin, I still don’t suggest it to anyone myself, firstly because I don’t offer medical advice of that nature regardless of my cost/benefit analysis (are there risks of potentially bad unknown side-effects with long-term usage? sure, but the risk of *not* taking longevity agents is also pretty large, and results in a much earlier likely death), and secondly because it is still likely to be higher risk than a lot of other simple things that I do often suggest to others, like glycine supplementation, which I see as close to zero risk. I’d hope that anyone that takes it themselves has blood panels done (if not much more) to ensure they’re not doing easily-observable harm to themselves as well. I’d like this section to be more comprehensive, but I’ll follow with some relevant pubmed papers for now:

Rapamycin and aging: When, for how long, and how much? https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401992/

Rapamycin fed late in life extends lifespan in genetically heterogeneous mice https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786175/

Rapamycin slows aging in mice. https://www.ncbi.nlm.nih.gov/pubmed/22587563

Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032600/

Mice Fed Rapamycin Have an Increase in Lifespan Associated with Major Changes in the Liver Transcriptome https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3883653/

Lifespan extension and cancer prevention in HER-2/neu transgenic mice treated with low intermittent doses of rapamycin https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026081/

Longevity, aging and rapamycin https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207939/

Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. https://www.ncbi.nlm.nih.gov/pubmed/21615676

Dosing of rapamycin is critical to achieve an optimal antiangiogenic effect against cancer. https://www.ncbi.nlm.nih.gov/pubmed/15612989

Intermittent supplementation with rapamycin as a dietary restriction mimetic https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249447/

Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. https://www.ncbi.nlm.nih.gov/pubmed/22107964

Towards natural mimetics of metformin and rapamycin. https://www.ncbi.nlm.nih.gov/pubmed/29165314

Name: Selegine (L-deprenyl)

Dosage: ~0-5mg/day

Cost/day: $0.25

Selegiline/L-deprenyl is a MAO-B (and sometimes MAO-A) inhibitor sometimes used to help treat Parkinson’s or depression which may be able to improve lifespan in humans.

Longevity study with low doses of selegiline/(-)-deprenyl and (2R)-1-(1-benzofuran-2-yl)-N-propylpentane-2-amine (BPAP). https://www.ncbi.nlm.nih.gov/pubmed/27777099

The significance of selegiline/(-)-deprenyl after 50 years in research and therapy (1965-2015). https://www.ncbi.nlm.nih.gov/pubmed/274804

Name: Epitalon

Dosage: 10mg/day for 5-10 days in a row, once or twice per year

Cost/day: $40

Epitalon is really interesting. A few concerns in humans and I don’t buy that the telomerase activation is the reason why it may have potential (if it does), but there’s a chance it passes EV calculations depending on how you do the math. I’ve tried it a few times and I’m uncertain if I’ll continue or not. More info here to be posted later.

Additional supplements I do not currently take

The above section concludes the actively-maintained list.

Under this I include a lot of links/notes from previous research, which is not comprehensive nor updated.

This section contains a list of supplements that I think might be worth taking, but that I currently don’t use. Substances in this section seem to be relatively safe, and I’m generally only not taking them because I have more doubts about their usefulness to me specifically.

Aspirin

Aspirin [Wikipedia] is used for more than just treating temporary pain or fevers. As an NSAID, it reduces both acute and long-term inflammation, and may also affect oxidant production, cytokine responses, and block glycooxidation reactions. Consuming a low dose of aspirin daily appears to lower the risk of CVD in higher-risk groups (generally older individuals with a relevant medical history), although appears to have little effect in otherwise healthy individuals. The risks of a few cancers may be lowered slightly by long-term continual use of aspirin, although this is generally a minor effect, and doesn’t seem to be the case for all types of cancer. Some organizations suggest daily aspirin use in small doses for those in certain risk groups, generally those that have already experienced a heart attack or stroke.

Among aspirin’s more common adverse effects is an increased risk of gastrointestinal bleeding, which is one of the reasons it’s not suggested by most organizations for otherwise healthy individuals with low CVD risk. Aspirin has increased the average lifespan (although not the maximum lifespan) of mice in some studies, but this is unlikely to be the case in humans unless significantly more needs to be taken, which would increase the probability of adverse effects notably.

To summarize, it’s very likely that continual aspirin usage reduces the risk of some types of cancer and moderately likely that it can reduce the risk of CVD in some higher-risk groups. Although side-effects are negligible for most individuals, it is difficult to tell if aspirin is worth taking for healthy and young individuals. It’s likely much more beneficial for the elderly or middle-aged, as they’re at a much higher risk of cancers as well as CVD. As a result of this, I don’t take aspirin regularly.

Cocoa Extract

Cocoa [Examine, webmd, Wikipedia] is well-known as a major component of chocolate. Although the sugar added to most modern chocolate definitely does not benefit one’s health, cocoa itself has many bioactive substances with potential benefits. Among the most notable is (-)-epicatechin, which can offer improvements in blood flow and a corresponding reduction in blood pressure for many individuals. As usual, the most notable improvements in blood pressure and cholesterol occurred in individuals with pre-existing elevated levels. Some age-related markers improve in mice when supplemented with (-)-epicatechin, although no direct increase in lifespan has yet been noted.

Supplementation with some form of cocoa (supplemented or consumed as ultra-dark chocolate) may be beneficial for some individuals, although consuming too much sugar with cocoa would likely offset any positive effects. Quality cocoa extract is more expensive than many of the other supplements listed on this page, coming in at $1-2 day for a proper dosage.

Also, I’d love to purchase this and test it on myself for awhile to see if the effects can easily be measured.

CoQ10

CoQ10 [Examine, webmd, Wikipedia] (Coenzyme Q10 / ubiquinone) is a substance found in meat and fish that is primarily present in mitochondria and aids ATP production. Although supplementation is likely safe, it’s difficult to find convincing evidence that CoQ10 supplementation would be effective for longevity. It may improve lipid peroxidation, blood flow and offer minor improvements in other areas, but in my opinion doesn’t appear to stand out from most supplements, both experimentally and theoretically.

Creatine

Creatine [Examine, webmd, Wikipedia] is an organic compound used in the recycling of ATP in humans. It can be found in notable amounts of muscle meat and can also be synthesized in humans via glycine, arginine, and methionine. Creatine is a very popular supplement for athletes with strong evidence that it notably increases power output and lean mass, with some evidence that it can offer minor improvements in related areas such as recovery, fatigue, and some biomarkers that are positively associated with quality anaerobic exercise. It’s very safe, has little potential for any side effects, and is relatively cheap. The only reason I don’t take creatine right now is that I’m not doing many activities to build muscle, although I’ll likely start taking it soon, even if only alongside basic resistance training, calisthenics, or even cardio.

Quercetin

Quercetin [Examine, webmd, Wikipedia] is a flavanoid found in fruits and vegetables. As usual, eating the right fruits and vegetables is good for you on its own, and may make supplementation less beneficial, or completely irrelevant. I likely get enough of this from my diet, although there may be benefits to infrequent high-dose supplementation.

L-carnitine

L-carnitine [Examine, webmd, Wikipedia] is an ammonium compound found in notable quantities in meat such as beef. Supplementation sometimes appears to offer some decent results, but I’ve determined that I like already get a sufficient amount from my diet.

PQQ

PQQ [Examine, Wikipedia] is a redox cofactor found in human breast milk and some foods such as kiwis. PQQ alters indicators of inflammation and mitochondrial-related metabolism. It’s likely very safe, the main reason I’m not currently taking it is there’s very little evidence showing that it notably benefits already-healthy young humans, and it costs a bit higher than most supplements on this page.

Resveratrol

Resveratrol [Examine, webmd, Wikipedia] cannot go without being mentioned, as the extract from grapes that inspired the ‘red wine is great for you’ craze many years ago, it has been a constant source of speculative benefits and is still a very popular supplement in longevity communities. Although it hasn’t quite lived up to its initial hype, there’s still a lot of research on how it may be beneficial for longevity in one way or another. I’m personally not very into resveratrol and don’t see it as that interesting by itself. A summary is currently excluded here and you’re encouraged to read the above links if interested, but to be rather blunt, I think resveratrol is very likely approximately worthless, and is just yet another case study in now media hype in no way correlates with actual efficacy.

Sulforaphane

Sulforaphane [Examine, webmd, Wikipedia] is a compound found in vegetables such as broccoli and cabbages, with the best sources of it being broccoli sprouts and cauliflower sprouts. I’ve taken sulforaphane previously, but it will be difficult to know if it had a notable effect on me or not. I’m currently focusing more on my diet and have decided against taking sulforaphane. I’ve excluded a research summary in favor of the above links.

Some other supplements I am currently considering

Nicotinamide Mononucleotide (NMN) (Wikipedia): todo

Nicottinamide Riboside (NR) (Wikipedia): todo

Pterostilbene (Wikipedia): todo

procyanidin (Wikipedia): todo, The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice

Trimethylglycine

Trimethylglycine [Exmine, Wikipedia] is a betaine amino-acid derivative found in some plants. It is notable for reliably reducing homocysteine levels in healthy subjects, sometimes by as much as 10%, and as much as 10-40% in unhealthy individuals. It appears that it might have a slightly negative effect in increasing, or preventing to some extent a decrease in, LDL, which is why I’m currently not taking it. It’s a nice molecule to be aware of and might deserve a spot in my stack at a later point, but as usual it would be nice to have more research available.

A lot of supplements have been excluded from this list, including many which are very interesting. Individuals who follow nootropic or longevity communities will definitely be curious why their favorite substance may have been excluded from this page, to which my answer is mostly that there’s too many substances for me to include all of them, so I did quite a bit of picking personal favorites. Even so, there’s likely many substances I’d like to include, but which I haven’t yet heard about or done enough research on. Feel free to message me on Twitter if you have any great suggestions here.

More interesting and potentially unsafe substances

This section contains some brief notes and links on substances that appear to be a lot more ‘experimental’ than the above sections, but have some interesting potential. In some cases it’s impossible to find proper tests of safety, or even basic toxicity, in humans. Regardless, they’re all interesting chemicals, sometimes increasing the lifespan of organisms such as mice by large amounts. A lot of compounds have been excluded from this list as there are too many for me to list currently. The most interesting item of this list is currently rapamycin, by a large margin. Also see list of potential CRMs.

Allantoin

Allantoin is a compound present in some cosmetics, toothpaste, shampoo, lotions, and more, which has improved lifespan in C. elegans in multiple studies.

Lipid profiling of C. elegans strains administered pro-longevity drugs and drug combinations.
https://www.ncbi.nlm.nih.gov/pubmed/30351306

A network pharmacology approach reveals new candidate caloric restriction mimetics in C. elegans https://www.ncbi.nlm.nih.gov/pubmed/26676933

Alpha-ketoglutarate

α-Ketoglutaric acid (2-oxoglutaric acid) is one of two ketone derivatives of glutaric acid.

Alpha-Ketoglutarate: Physiological Functions and Applications: https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC4703346/

Rejuvant®, a potential life-extending compound formulation with alpha-ketoglutarate and vitamins, conferred an average 8 year reduction in biological aging, after an average of 7 months of use, in the TruAge DNA methylation test: https://www.aging-us.com/article/203736/text

Astragalus Membranaceus

astragalus membranaceus contains a compound called TA-65 that may activate telomerase, extending the lengths of the shortest telomeres in humans. This compound is lacking in notable research, and much of what exists is clearly for-profit.

A natural product telomerase activator as part of a health maintenance program. https://www.ncbi.nlm.nih.gov/pubmed/20822369

Anti-Aging Implications of Astragalus Membranaceus (Huangqi): A Well-Known Chinese Tonic https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5758356/

Astragalus membranaceus: A Review of its Protection Against Inflammation and Gastrointestinal Cancers https://www.ncbi.nlm.nih.gov/pubmed/26916911

Rifampicin

Rifampicin is an antibiotic that has improved lifespan in C. elegans

Rifampicin reduces advanced glycation end products and activates DAF-16 to increase lifespan in Caenorhabditis elegans. https://www.ncbi.nlm.nih.gov/pubmed/25720500

Lipid profiling of C. elegans strains administered pro-longevity drugs and drug combinations.
https://www.ncbi.nlm.nih.gov/pubmed/30351306

C60 (buckminsterfullerene)

C60 is an interesting fullerene that has extended lifespan in some animals notable, but has little data on human consumption and safety. In an original study that gained quite a bit of attention, it was reported to ‘almost double’ the lifespan of rats. Now in 2021 the two most recent studies I see show that it did not extend lifespan, and that it only extended it by around 7%. There is less information on mechanism of action than we would want, but it is generally suggested to be related to free radicals.

There’s apparently quite a few people that have been taking this themselves, buying it from less-than-reputable Internet sources and hopefully not letting it be contaminated with light, as when exposed to light it degrades and becomes very dangerous to consume. This is certainly not something I plan to touch myself in with the current state of our knowledge on it, but it does seem like a very interesting chemical nonetheless.

Benzofuranylpropylaminopentane

Benzofuranylpropylaminopentane is an unusual and understudied drug, in some ways similar to selegiline noted above. It has prolonged lifespan to a minor extent, such as 4% in mice.

Longevity study with low doses of selegiline/(-)-deprenyl and (2R)-1-(1-benzofuran-2-yl)-N-propylpentane-2-amine (BPAP). https://www.ncbi.nlm.nih.gov/pubmed/27777099

nordihydroguaiaretic acid

nordihydroguaiaretic acid (NDGA) has extended the lifespan of mesquitos by 50%, and male mice by 10%.

Dietary nordihydroguaiaretic acid increases the life span of the mosquito. https://www.ncbi.nlm.nih.gov/pubmed/3749035

Acarbose, 17-α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. https://www.ncbi.nlm.nih.gov/pubmed/24245565

GDF11

GDF11 is also really interesting. Similar to Epitalon it’s obvious that the wikipedia article was authored by someone into longevity, but this is another thing I’m going to keep an eye on.

If you enjoyed this post or have corrections feel free to say hi on Twitter or any method on my about page